skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Greiman, Stephen E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dehnel’s phenomenon describes a seasonal and reversible winter decrease in body size, which is a trait that predicts total energy demand. However, the phenomenon remains less well- studied than common energy-saving or energy-seeking strategies of mammals. Here, we explore the generality of Dehnel’s phenomenon in Sorex shrews on three continents. First, we use new field sampling to document seasonal phenotypic change in masked shrews (Sorex cinereus) in North America at the lowest latitude yet investigated for this species (35.7°). This includes the first documentation of appendicular skeleton remodification in Sorex. Summer-to- winter decreases in S. cinereus body mass, braincase height, and femur length were 13%, 11.5%, and 8.7%, respectively, with subsequent increases of each in second-year individuals. Second, we compile a comprehensive dataset of Dehnel’s-relevant studies to test whether seasonal plasticity in Sorex globally is related to climate, demonstrating that body and braincase plasticity are functions of cold season temperatures. Meta-analytical models for both these traits generalized by a) applying at both inter- and intraspecific scales, and b) predicting the seasonal change newly observed for S. cinereus. Our results support body size plasticity as an environmentally-responsive innovation in these very small, homeothermic mammals. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  2. Hylophthirus spinosus, new genus and new species (Phthiraptera: Anoplura: Enderleinellidae), is described from specimens collected from the particoloured flying squirrel, Hylopetes alboniger in Khammouane Province, Laos (Lao People’s Democratic Republic). Both sexes of the new louse are illustrated with stacked microphotographs, scanning electron micrographs and line drawings. An updated morphological identification key to the six genera (Atopophthirus, Enderleinellus, Hylophthirus, Microphthirus, Phthirunculus and Werneckia) now recognised within the family Enderleinellidae is presented. The new genus is unique within the Enderleinellidae in having massive spines (modified setae) on some abdominal sternites, partially bulbous 5th antennal segments, mesothoracic spiracles borne on protuberances and the morphology of the genitalia of both sexes. Tables showing all genera of sucking lice that include species parasitising sciurids (squirrels, chipmunks, susliks and marmots), and all known species of enderleinellids, with their known host associations and geographical distributions are included and briefly discussed in relation to the new genus and species.  
    more » « less
  3. Amid global challenges like climate change, extinctions, and disease epidemics, science and society require nuanced, international solutions that are grounded in robust, interdisciplinary perspectives and datasets that span deep time. Natural history collections, from modern biological specimens to the archaeological and fossil records, are crucial tools for understanding cultural and biological processes that shape our modern world. At the same time, natural history collections in low and middle-income countries are at-risk and underresourced, imperiling efforts to build the infrastructure and scientific capacity necessary to tackle critical challenges. The case of Mongolia exemplifies the unique challenges of preserving natural history collections in a country with limited financial resources under the thumb of scientific colonialism. Specifically, the lack of biorepository infrastructure throughout Mongolia stymies efforts to study or respond to large-scale environmental changes of the modern era. Investment in museum capacity and training to develop locally-accessible collections that characterize natural communities over time and space must be a key priority for a future where understanding climate scenarios, predicting, and responding to zoonotic disease, making informed conservation choices, or adapting to agricultural challenges, will be all but impossible without relevant and accessible collections. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  4. Abstract Natural history collections (NHCs) are important resources for a diverse array of scientific fields. Recent digitization initiatives have broadened the user base of NHCs, and new technological innovations are using materials generated from collections to address novel scientific questions. Simultaneously, NHCs are increasingly imperiled by reductions in funding and resources. Ensuring that NHCs continue to serve as a valuable resource for future generations will require the scientific community to increase their contribution to and acknowledgement of collections. We provide recommendations and guidelines for scientists to support NHCs, focusing particularly on new users that may be unfamiliar with collections. We hope that this perspective will motivate debate on the future of NHCs and the role of the scientific community in maintaining and improving biological collections. 
    more » « less